Understanding the phase behavior of coarse-grained model lipid bilayers through computational calorimetry.

نویسندگان

  • Jocelyn M Rodgers
  • Jesper Sørensen
  • Frédérick J-M de Meyer
  • Birgit Schiøtt
  • Berend Smit
چکیده

We study the phase behavior of saturated lipids as a function of temperature and tail length for two coarse-grained models: the soft-repulsive model typically employed with dissipative particle dynamics (DPD) and the MARTINI model. We characterize the simulated transitions through changes in structural properties, and we introduce a computational method to monitor changes in enthalpy, as is done experimentally with differential scanning calorimetry. The lipid system experimentally presents four different bilayer phases - subgel, gel, ripple, and fluid - and the DPD model describes all of these phases structurally while MARTINI describes a single order-disorder transition between the gel and the fluid phases. Given both models' varying degrees of success in displaying accurate structural and thermodynamic signatures, there is an overall satisfying extent of agreement for the coarse-grained models. We also study the lipid dynamics displayed by these models for the various phases, discussing this dynamics with relation to fidelity to experiment and computational efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of a Continuum Mean Field Approximation to Fullerenes in Lipid Bilayers

Biological applications of fullerenes are severely impeded by our incomplete understanding of their toxicity. Here we extend a recently developed computational method to gain insight into the behavior of fullerenes in lipid bilayer systems. The physical behavior of fullerenes is captured through a continuum model incorporating both their hollow geometry and surface chemistry. By using this mode...

متن کامل

Towards an understanding of membrane-mediated protein-protein interactions.

We propose a computational framework to study the lipid-mediated clustering of integral membrane proteins. Our method employs a hierarchical approach. The potential of mean force (PMF) of two interacting proteins is computed under a coarse-grained 3-D model that successfully describes the structural properties of reconstituted lipid bilayers of dymiristoylphophatidylcholine (DMPC) molecules. Su...

متن کامل

Coarse-grained simulation: a high-throughput computational approach to membrane proteins.

An understanding of the interactions of membrane proteins with a lipid bilayer environment is central to relating their structure to their function and stability. A high-throughput approach to prediction of membrane protein interactions with a lipid bilayer based on coarse-grained Molecular Dynamics simulations is described. This method has been used to develop a database of CG simulations (coa...

متن کامل

A generic model for lipid monolayers, bilayers, and membranes

We describe a simple coarse-grained model which is suited to study lipid layers and their phase transitions. Lipids are modeled by short semiflexible chains of beads with a solvophilic head and a solvophobic tail component. They are forced to self-assemble into bilayers by a computationally cheap ‘phantom solvent’ environment. The model reproduces the most important phases and phase transitions...

متن کامل

Coarse-grained molecular simulations of membrane adhesion domains.

We use a coarse-grained molecular model of supported lipid bilayers to study the formation of adhesion domains. We find that this process is a first order phase transition, triggered by a combination of pairwise short range attractive interactions between the adhesion bonds and many-body Casimir-like interactions, mediated by the membrane thermal undulations. The simulation results display an e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 116 5  شماره 

صفحات  -

تاریخ انتشار 2012